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Chapter 1

Preface

What follows are my personal notes created during my undergraduate algorithms course and later an independent
study under Professor Holliday as a graduate student. I am not a complexity theorist; I am a graduate student with
some knowledge who is–alas–quite fallible. Accordingly, this text is made available as a convenient reference, set of
notes, and summary, but without even the slightest hint of a guarantee that everything contained within is factual and
correct. This said, if you find an error, I would much appreciate it if you let me know so that it can be corrected.
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Chapter 2

A Brief Review of Algorithms

§2.1 Algorithm Analysis

2.1.1 O-notation
As usual, N denotes the set of all natural numbers. By definition, algorithms are step-by-step processes which vary in
the number of steps executed, the space used, etc. for a given input based on both the size of that input as well as other
algorithm-intrinsic properties of the input. It’s obvious that this dependency on the algorithm-relative properties of an
input represents a severe roadblock to the general characterization and representation of the relative efficiency (time,
space, and otherwise) of algorithms; luckily, it can be abstracted away from. The most common way of doing so is
via worst-case analysis. There are, however, alternatives: best-case analysis and–more notably–average case analysis.
Some thought shows the former to be a rather foolish choice, but the latter is of considerable interest. Unfortunately,
the distribution of instances of a particular problem seldom admit of an easy characterization, making average case
analysis a pragmatically difficult venture and leaving worst-case analysis as the de facto choice.

Accepting this, characterizing the run times, space requirements, etc. of algorithms falls naturally into a func-
tional representation with a parameter, normally n, for the size of the input. In other words, we characterize the
time/space/resource requirements of algorithms by functions from N → N, e.g. n, n2 + 3, and 3n. Later, it will be
useful to utilize real-valued functions like

√
n and log(n); appearances to the contrary, these functions too are to be

thought of as functions over N, namely max{d f (n)e, 0} for a real-valued f .
Of course, rather than try to give a function which perfectly represents a given algorithm’s usage of a resource–a

tall order–our characterization captures usage in a more general sense. For two functions f : N → N and g : N → N,
f (n) = O(g(n)) (pronounced, " f (n) is big-oh of g(n)" or " f is of the order of g") if and only if there are n0, c ∈ N such
that f (n) ≤ c · g(n) for every n ≥ n0. Informally, f (n) = O(g(n)) means that f eventually uses the resource no faster
than g, modulo a constant. Changing emphasis, this is also notated g(n) = Ω( f (n)). Finally, if both f (n) = O(g(n))
and f (n) = Ω(g(n)), then we write f (n) = Θ(g(n)), meaning f and g have the exact same rate of usage.

Given our work thus far, it’s easy to show that–for any p ∈ N, r > 1, and resource,

O(logp(n)) < O(np) < O(rn)

(Time) Efficient
An algorithm is efficient if and only if it has a polynomial time bound; that is, its runtime is O(np) for some p ∈ N.

(Time) Intractable
A problem for which no efficient algorithm exists is intractable

Properties

� Transitivity:

1
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� If f = O(g) and g = O(h), then f = O(h).

� If f = Ω(g) and g = Ω(h), then f = Ω(h)

� If f = Θ(g) and g = Θ(h), then f = Θ(h)

� Let k be a fixed constant, and let f1, f2, ..., fk and h be functions such that fi = O(h) for all i. Then, f1, f2, ..., fk =

O(h).

� Suppose that f and g are two functions (taking nonnegative values) such that g = O( f ). Then f + g = Θ( f ).

� Let f be a polynomial of degree d, in which the coefficient ad is positive. Then f = O(nd).

� For every b > 1 and every x > 0, we have logb(n) = O(nx). Note that the base b is often dropped because
loga(n) =

logb(n)
logb(a) , a constant change.

� For every r > 1 and every d > 0, we have nd = O(rn).

� The cost of storing a number of length n is log(n).

Some particularly tricky problems may require ingenious functions, say f (n) = n3 on even n, but only 1 on odd. It
follows that f (n) , O(n2) and f (n) , Ω(n2).
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§2.2 Common Structures

2.2.1 Graphs

Graph
A graph is defined as a set of nodes V = {1, ..., n} and edges E = {〈u, v〉|u, v nodes }. The cardinality of V and E

are traditionally, n = |V | and m = |E|.

Figure 2.1: A Graph

Graphs are traditionally represented by either an ‘adjacency matrix’ or an ’adjacency list’. The former is an n x n
matrix wherein M[i, j] = 1 if 〈i, j〉 ∈ E and 0 otherwise. The latter is a list of n elements wherein the ith entry is itself
a list of all the neighbors of node i.

Space Is 〈u, v〉 ∈ E? What are the neighbors of node v?
List Θ(m + n) Θ(degree(u) + 1) Θ(1) to return, Θ(degree(u) + 1) to print
Matrix Θ(n2) Θ(1) Θ(n)

Sparse/Dense
A family of graphs is sparse if m = O(n) and dense if m = Ω(n2).

Undirected/Directed
A graph is directed if and only if whenever 〈u, v〉 ∈ E, 〈v, u〉 ∈ E as well. A graph is undirected just in case it is
not directed.

� Proposition 2.1.
Let G be an undirected graph on n nodes. Any two of the following statements implies the third.

(i) G is connected

(ii) G does not contain a cycle

(iii) G has n − 1 edges
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2.2.2 Trees

Tree
A graph G is a tree if and only if it is undirected and any two vertices are connected by exactly one simple path (a
path without any repeated vertices)

Figure 2.2: A Tree

� Proposition 2.2.
Trees don’t have cycles

� Proposition 2.3.
Every n-node tree has exactly n − 1 edges

2.2.3 Networks

Network
A network N = (V, E, s, t, c) is a graph (V, E) with two specified notes s (the source) and t (the sink) such that the
source s has no incoming edges and the sink t has no outgoing edges. In addition, for each edge 〈i, j〉 ∈ E, we
have a capacity c(i, j) ∈ N − {0}

s

t

2

3 1

3
2

4 1

Figure 2.3: A Network
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Flow
A flow on a network N is a function f assigning an n ∈ N to each edge 〈i, j〉 ∈ E such that f (i, j) ≤ c(i, j) and, for
every node other than s and t, the sum of the f -values entering the node is equal to the sum of the f -values
leaving it. The value of a flow is the sum of the f -values leaving s or–equivalently–entering t.

� Theorem 2.1 (Max Flow - Min Cut Theorem).
The value of the maximum s − t flow equals the capacity of the minimum s − t cut

� Theorem 2.2 (Cycle-less Maximum Flows).
For all maximum flows on directed graphs, there exists a max flow on the same graph with the same value, but no
cycles with positive flow
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§2.3 Algorithms
Algorithms are divisible into four broad classes:

(1) Greedy Algorithms

(2) Dynamic Programming

(3) Divide and Conquer

(4) Network Flow
What follows is a brief overview of each along with the problems and algorithms traditionally classed under them.
The notes in this section are owed to the lectures of Professor David Liben-Nowell.

2.3.1 Greedy Algorithms

Greed is good
– Gordon Gekko, Wall Street

A greedy algorithm is an algorithm that uses myopic greed to achieve a global optimum. This strategy, of course,
is heavily dependent on the internal structure of the problem. Sometimes myopic greed can always deliver a global
optimum; others, it is doomed to mediocrity or worse. There are two main arguments used to show greedy algorithms
are in fact optimal: ’Greedy Stays Ahead’ and ’Exchange’. The first argues that at no point can optimal be any better
than greedy and therefore greedy must be at least as good as the optimal (and therefore is optimal); an example of this
style usually accompanies the interval scheduling problem. The ’Exchange’ argument, on the other hand, considers
the optimal solution (which we assume differs from the greedy) then argues that members of the solution out of place
by the greedy criterion at worst maintain the quality of the solution. It follows that by performing a number of these
swaps we achieve the greedy solution–which must be at least as good as the optimal (and therefore is optimal); this
argument often accompanies the ’minimize lateness’ version of the scheduling problem.

Stable Marriage

Stable Marriage
Given: A set M and a set W such that |M| = |W | = n where every member of each has
complete preferences over the opposite set
Return: A perfect matching of M and W with no instabilities

Matching
A matching of M and W is a set of 〈m,w〉 pairs such that no person is in more than one pair; in a perfect

matching, no person is left unpaired.

Instability
In a matching, 〈m,w〉 is an instability if and only if there exists m ∈ M, w ∈ W such that (1) m, w are not matched
and (2) m and w each prefer the other to their current match.

Gale-Shapley Proposal Algorithm

1 while ∃m ∈ M who hasn’t been rejected by all w ∈ W do
2 m proposes to his most preferred w who hasn’t yet rejected him;
3 w accepts if single or if she likes him more than her current partner, m′;

4 return engaged pairs

� Proposition 2.4 (Gale-Shapley gives a Stable, Perfect Matching).
The Gale-Shapley proposal algorithm terminates is O(n2) and returns a perfect matching with no instabilities.
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Proof Sketch.
Note that each iteration results in a new proposal and only n ∗ n possible; thus, O(n2). |W | = |M| and
women prefer a man over no man–thus, perfect matching. As the algorithm progresses, elements of W can
only improve their lot.

Valid Pair
For m ∈ M and w ∈ W, m and w are a valid pair if and only if there exists a stable, perfect matching in which m
and w are matched. The best valid partner for m/w is the highest ranked member of the opposite set for which
m/w has a valid pair.

� Proposition 2.5 (Gale-Shapley and Best Valid Partners).
The Gale-Shapley Proposal Algorithm returns a perfect matching in which each m is paired with their best valid
partner, each w their worst.

Stable Marriage Variations:

1. Polygamy or Stable Assignment (Hospitals and Residents)

(a) A lazy solution can be achieved by entering the polygamists as multiple individuals; a proof that this
solution is optimal can be achieved by showing that a hospital-resident instability implies a m-w instability
in Gale-Shapley.

(b) We can do better by having residents propose to hospitals and having each hospital maintain a min heap of
partners, booting the worst when all slots are filled.

(c) We can even account for number discrepancies by creating dummy hospitals ("Unemployment") or loser
residents ("Worse than the worst").

(d) In terms of runtime, the above can be O(klog(k)m2) vs. Gale-Shapley’s O(k2m2), for k slots per hospital
and m total hospitals.

Reachability

Reachability
Given: A graph G = (V, E) and two nodes 1, n ∈ V

Return: Is there a path from 1 to n?

There are two standard algorithms used to search a graph: Breadth First Search (BFS) and Depth First Search (DFS).
These algorithms represent two variations on the same general strategy. Both move from node to node, but BFS does
so in a FIFO manner and DFS a LIFO manner.
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Breadth First Search

1 Initialize seen[v] := f alse for all nodes v except s;
2 Initialize seen[s] := true ;
3 Insert s into an empty queue Q ;
4 while Q is not empty do
5 Dequeue u from Q;
6 → Do something with u← ;
7 for every neighbor v of u with seen[v] = f alse : do
8 seen[v] := true;
9 Enqueue v into Q;

Depth First Search

1 Initialize seen[v] := f alse for all nodes v except s;
2 Initialize seen[s] := true;
3 Push s into an empty stack S ;
4 while S is not empty do
5 Pop u from S ;
6 → Do something with u←;
7 for every neighbor v of u with seen[v] = f alse : do
8 seen[v] := true;
9 Push v onto S ;

The runtime of the BFS and DFS algorithms are O(m + n) if implemented using an adjacency list or O(n2) if
implemented by an adjacency matrix.

Shortest Path

Shortest Path

Given: A graph G = 〈V, E〉, weights w : E → Z≥0, and s ∈ V

Return: The length of all shortest paths from s in G

Dijkstra’s Algorithm

1 Initialize D[v] := +∞ for all nodes v except s;
2 Initialize D[s] := 0;
3 while not all D[u]’s are finite do
4 Let v be the node such that D[v] = +∞ and the quantity dv := min

u:〈u,v〉∈E
D[u] + w(u, v) is minimized;

5 If dv = +∞, then return D; otherwise, set D[v] := dv;

6 return D

Minimum Spanning Trees

Minimum Spanning Trees (MST)

Given: A connected graph G = 〈V, E〉 and weights w : E → Z≥0

Return: T = 〈V, E′ ⊆ E〉 a tree such that
∑

e∈E′ w(e) is minimized

Note that in the unweighted case we have a simple solution in the form of the BFS tree; adding weights, however,
complicates the problem.

� Proposition 2.6 (Cycle Rule).
Let C be any cycle in G. Let e ∈ C be the strictly heaviest edge in C. Then e is not in any MST of G.
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� Proposition 2.7 (Cut Rule).
Let 〈S ,V − S 〉 be any cut in G. Let e be the strictly cheapest edge crossing the cut 〈S ,V − S 〉. Then e is in every MST
of G.

Surprisingly, there exists a large number of greedy algorithms that solve the MST quickly. Among the best known
are the ’Reverse-Delete Algorithm’ (Delete heaviest edge, unless doing so disconnects the graph), ’Kruskal’s Algo-
rithm’ (Add cheapest edge unless doing so creates a cycle), and ’Prim’s Algorithm’ (starting from any node, assign
it to S, make the cut 〈S ,V − S 〉, add the cheapest edge that crosses the cut and the node it connects to to S. Repeat).
Rather surprisingly, all of these algorithms can be implemented in O(mlog(n)) using the disjoint sets data structure.

Interval Scheduling
Given: A set of intervals {1, 2, ..., n} each of which contains a start and end time.
Return: A schedule that has the maximum number of intervals possible without conflicts

Consider the following greedy algorithm:

End-Time Greedy Schedule

1 Sort the intervals by end time;
2 while There exists an unexamined interval do
3 Consider the next interval;
4 if it doesn’t conflict with any earlier accepted intervals :
5 Accept;

6 else:
7 Don’t accept

Considering the runtime of this algorithm, we see that the intial sort is O(nlog(n)) and trumps the rest of the algorithm
(O(n)).
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2.3.2 Dynamic Programming
A bottom up programming technique that emphasizes solving small subproblems once, and then using these to con-
struct possible solutions to combinations of subproblems until, eventually, the problem itself is resolved. Perhaps the
most intuitive way to view this procedure is as solving a reduced version of the problem (try to reduce the complex-
ity along a variable dimension) and then using this reduced version to find the possible solutions to a slightly larger
version, and so on. Dynamic programming algorithms almost always use tables to store the results of solving smaller
subproblems, and emphasize finite loops that mimic recursive calls.

Dynamic Programming algorithms work well under two conditions: (1) solutions have a recursion friendly sub-
structure and (2) there exists a small number of subproblems that are solved many times.

Weighted Interval Scheduling
Given: n jobs, each with a start time, end time, and value

Return: A set S of consistent jobs such that
∑
j∈S

v( j) is maximized

Sequence Alignment
Given: Two strings x and y

Return: An alignment of x and y of minimum cost

We generate a dynamic programming solution by noting that in an optimal alignment M, at least one of the
following is true:

(i). (m, n) ∈ M

(ii). The mth position of X is not matched

(iii). The nth position of Y is not matched

and noting that we may impose costs δ and αi, j for a gap or mismatch of letters i and j respectively. It follows
immediately that we have the following recurrence relation for i, j ≥ 1:

OPT (i, j) = min{αxi,y j + OPT (i − 1, j − 1), δ + OPT (i − 1, j), δ + OPT (i, j − 1)}

And thus we achieve the following algorithm:

Alignment (X,Y)

1 Array A[0...m, 0...n];
2 Initialize A[i, 0] = iδ for each i;
3 Initialize A[0,j] = jδ for each j;
4 for j = 1, ..., n do
5 for i = 1, ...,m do
6 Use the recurrence above to compute A[i, j];

7 return A[m,n]

To evaluate the runtime of the algorithm, we need only note that the array has at most mn entries and we spend a
constant amount of time on each–yielding a O(mn) bound. It’s also worth noting that by translating this problem into
a graph, we can achieve the same runtime bound, but a O(n + m) bound on memory usage (6.7).

Word Segmentation
Given: A sequence of n letters from {A, B, ...,Z} and oracle access to English
Return: A boolean corresponding to whether or not the sequence can be segmented into
a sequence of English words.

To solve this problem, think about working backwards from the end of the sequence and assigning either true or
false to each letter indicating whether the sequence from that letter to the end is segmentable or not.
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Shortest Paths in Weighted Graphs
Given: A directed graph G = 〈V, E〉, weights W : E → Z, a source s and sink t in V , and
no negative cycles
Return: The s − t path of minimum weight

It’s helpful to note that this problem is very similar to the one solved by Djikstra’s Algorithm; indeed, only
the possibility of negative weights differentiates the two. Nonetheless, this difference is enough to break Djikstra’s
algorithm (as well as attempts to translate back to Djikstra’s, for example adding a constant amount to each edge to
make them all positive. If all paths had the same length this would work, but since the number of edges in a path
varies, we actually change the shortest path during this operation) and so we consider other solutions.

The Bellman-Ford Algorithm provides our first solution to the given problem, and is based on the following obser-
vation: If G has no negative cycles, then there is a shortest path from s to t that is simple (i.e. does not repeat nodes),
and hence has at most n − 1 edges. Using OPT (i, v) to denote the minimum cost of a v − t path using at most i edges;
thus, by the above, our original problem is to compute OPT (n − 1, s). From our definitions, we may generate the
following recursive formula:

OPT (i, v) = min{OPT (i − 1, v),min
W∈V
{OPT (i − 1,w) + cvw}}

and may construct the following algorithm:

Bellman-Ford

1 Array M[0...n − 1,V];
2 Define M[0, t] = 0 and M[0, v] = ∞ for all other v ∈ V;
3 for i = 1, ..., n − 1 do
4 for v ∈ V in any order do
5 Compute M[i, v] using the recurrence OPT above;

6 return M[n − 1, s]

Considering the runtime of BELLMAN-FORD we can note that the table M has n2 entries and each entry takes at
most n time, giving a O(n3) time; we may, however, improve this bound by reexamining our recurrence and utilizing
a different variable for the number of edges in the graph–an analysis which gives a O(mn) bound.

In addition, there also exists a second solution to this problem by slowly building up the number of nodes we may
use to get from s to t. This process generates the following recursive formula:

OPTk(u, v) = the optimum path from u to v where all intermediate nodes are in {1...k}

OPTk+1(u, v) = min{OPTk(u, v),OPTk(u, k + 1) + Optk(k + 1, v)}

and algorithm:

Floyd-Warshall

1 Fill in OPT0;
2 for k = 1, ..., n do
3 for all u, v do
4 Fill in OPTk;

5 return OPTn(s, t)
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2.3.3 Divide and Conquer

’Divide and Conquer’ describes a class of algorithms which progress by breaking input into several parts and then
recursively combining these to generate overall solutions; in general, divide and conquer algorithms don’t provide
initial polynomial time solutions to hard problems, but rather provide more efficient implementations of problems
already known to be solvable in polynomial time (i.e. where even brute force is polynomial). Some of the more famous
divide and conquer algorithms are Binary Search, Quicksort, and Mergesort. Examining these and other examples, we
find that divide and conquer algorithms go through three basic stages: Divide, Conquer, and Reconstruct. Interestingly,
it is usually this last stage that poses most of the difficulties.

Counting Inversions
Given: Array A[1...n] of integers
Return: The number of inversions in A (〈i, j〉 such that i < j and A[i] > A[ j])

To solve this problem, consider breaking inversion into three cases: those on the right of the midpoint, those on
the left, and those that cross. This insight leads to the following algorithm:

CI(A)

1 if |A| ≤ 1 :
2 return 0
3 else:
4 Divide A into L = A[1... |A|2 ], R = A[ |A|2 + 1...|A|];
5 CL = CI(L);
6 CR = CI(R);
7 CX = "Cross-Half" inversions (check all pairs);
8 return CL + CR + CX

Using the Master method, we find that the runtime of this algorithm is θ(n2)–the same as brute force! Examining the
algorithm above shows that it is, in fact, the CX term which is slowing the algorithm; seeking a cleverer implementation
yields:

1 CX = 0;
2 Sort L (with a good sort);
3 for Each x ∈ R do
4 Binary search for x in L;
5 CX = CX+ the number of y ∈ L such that y > x;

Trying the master method again, we find that it falls into none of the cases; however, by induction we can prove
θ(nlog2(n)).

Order Statistics
Given: A[1...n], k ∈ {1...n}
Return: The kth largest element of A (where the first largest element is the smallest)
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Magic5(A[1...n], k ∈ {1...n})

1 if k == n == 1 :
2 return A[1]
3 else:
4 Arbitrarily divide A into n

5 piles of 5 numbers each;
5 Find the median of each pile by brute force;
6 Set x as the median of the medians;
7 Partition A into LESS[1...i] and GTR[1...n-i-1];
8 if i + 1 == k :
9 return x

10 elif i + 1 < k :
11 return MAGIC5(GTR, k-i-1)

12 else:
13 return MAGIC5(LESS, k)

Rather amazingly, writing out the recurrence relation and calculating the sums for the recursion tree (note that all
the operations at each level are O(n)) results in an upperbound of O(n) for the entire algorithm.

Closest Points
Given: {〈xi, yi〉 | 1 ≤ i ≤ n}

Return: argminp,q∈P;p,q d(p, q) =
√

(px − qx)2 + (py − qy)2

ClosestPoints (P[1...n])

1 if n <= 3 :
2 Compute all pairwise distance and return the smallest pair;

3 else:
4 boundary := x-coordinate of the median of P with respect to x-coordinate;
5 Left := the points in P with x-coordinate <= boundary (still sorted by y);
6 Right := the points in P with x-coordinate> boundary (still sorted by y);
7 δL, pL, qL := CLOSESTPOINTS(Left);
8 δR, pR, qR := CLOSESTPOINTS(Right);
9 δ := min{δL, δR};

10 DMZ := the points in P with x-coordinate in boundary ±δ (still sorted by y);
11 for Each p ∈ DMZ do
12 Compare p to the 9 points before and after it in the DMZ order;
13 Let δC , pC , qC be the distance between (and the points in) the closest such pair.;

14 return δi, pi, qi for the smallest δi for i ∈ {L,R,C}

A rather involved (geometric) pigeonhole argument shows that this reduction actually operates in O(nlog(n)) time
vs. the brute force O(n2).

� Theorem 2.3 (Master Theorem).
Let T (n) = aT (n/b) + f (n) for a ≥ 1 and b > 1 and for some asymptotically positive function f . Then:

(i) if f (n) = O(nlogb(a)−ε) for some constant ε > 0, then T (n) = θ(nlogb(a)). ("The leaves dominate")

(ii) if f (n) = θ(nlogb(a)), then T (n) = θ( f (n)log(n)). ("All levels are equal")

(iii) if f (n) = ω(nlogb(a)+ε) for some constant ε > 0, then T (n) = θ( f (n)). ("The root dominates"); this case also
requires that for all sufficiently large n and some c > 1, we require that a f (n/b) ≤ c f (n).
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NOTE: These three cases are not exhaustive; many recurrences aren’t solvable via the Master Theorem; Ex:
Counting Inversions’ T (n) = 2T (n/2) + nlog(n)
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2.3.4 Network Flow
Network flow represents a slightly less mainstream algorithmic technique the relies heavily on the graph theoretic
notion of network flows. Despite its greater anonyminity, nework flow algorithms provide a powerful means of solving
many complex problems.

Given a directed graph G = 〈V, E〉, a capacity function C : E → Z≥0 and nodes s, t ∈ V such that there are no
edges into s and no edges out of t.

s-t Flow: A function f : E → R≥0 such that (i) ∀e ∈ E, f (e) ≤ c(e) and (ii) ∀u < {s, t},
∑

u:(u,v)∈E f (u, v) =∑
u:(v,u)∈E f (v, u) (flow into u = flow out of u), the conservation constraint.

Flow Value : the flow out of the source ( fout(s)), note that fout(s) = fin(t)

Residual Graph : Given a graph G and flow f , we’ll define the residual graph G f with:

� Same nodes as G
� for every edge e for which f (e) < c(e) include the edge in G f with residual capacity c(e) − f (e) (forward

edges).
� for every edge 〈u, v〉 in G for which f (u, v) > 0, include 〈v, u〉 in G f with residual capacity f (u, v) (backward

edges).

Maximum Flow
Given: A directed graph G, capacity function c, source node s, and sink node t

Return: s − t flow f such that value( f ) is maximized

Ford-Fulkerson

1 Initially f (e) = 0 for all e in G;
2 while there is an s − t path in the residual graph G f do
3 Let P be a simple s − t path in G f ;
4 f ′ = AUGMENT ( f , P);
5 Update f to be f ′;
6 Update the residual graph G f to be G f ′ ;

7 return f

Augment( f , P)

1 Let b be the minimum residual capacity of any edge on P with respect to the given flow, f ;
2 for each edge (u, v) ∈ P do
3 if e = (u, v) is a forward edge :
4 increase f (e) in G by b

5 else:
6 (u, v) is a backward edge, and let e = (v, u);
7 decrease f (e) in G by b;

8 return f

Considering the runtime of FF shows that the algorithm runs in O(m f ∗)–an inefficient solution given that the input
size is about m + log( f ∗).

EDMONDS-KARP Heuristic 1: Always choose the augmenting path with largest residual capacity. This
produces a PRIM-like algorithm that runs in O(m2log(m)log( f ∗)).

EDMONDS-KARP Heuristic 2: Pick the shortest augmenting path. This addition to FF produces an algorithm
that runs in O(nm2).

Bipartite Matching
Given: G = 〈L ∪ R, E〉

Return: Maximum-sized matching in G
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To solve this problem, simply connect the source to all the nodes on the left with capacity 1, assign capacity 1
to all the edges in the graph, and then connect all the nodes on the right to the sink, also with capacity 1. Moreover,
because of the bound on our capacities, we can accomplish this using the FF algorithm in O(mn) time.

Edge-Disjoint Paths
Given: A graph G, nodes s and t

Return: Maximum number of s − t paths that don’t share any edges

To solve this problem, simply translate every edge into a backward and forward directed, set the capacity of every
edge to 1, and then run EDMONDS-KARP (Use the ’No Cycles’ theorem). Moreover, because of the bound on our
capacities, we can accomplish this using the FF algorithm in O(mn) time.
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§2.4 Data Structures
Array- We store n items in a linear sequence of slots. We have Θ(1)-time access to the ith item, but to move an item

around involves shuffling the other elements. There is also a fixed size of the array.

� Dictionary (sorted array): Θ(1) create; Θ(log(n)) lookup (binary search); Θ(n) insert/delete.

� Stacks / Queues (circular array): Θ(1) pop/push or enqueue/dequeue (unless full)

Doubly Linked Lists- We store n items in a linear sequence of linked nodes. We have Θ(i)-time access to the ith
item by walking down the list, but we can splice in/out nodes in constant time.

� Dictionary (unsorted linked list): Θ(1) create; Θ(n) lookup/delete (linear search); Θ(1) insert.

� Stacks / Queues: Θ(1) pop/push or enqueue/dequeue.

(Balanced) Binary Search Trees- A binary tree stores n nodes, where each node has up to two children ("left" and
"right"). Each node in a binary search tree (BST) stores a key, and maintains the property that, for a node u with
key uk, every key contained in u’s left subtree has keys < uk and every key contained in u’s right subtree has keys
> uk. A balanced binary search tree (AVL tree, red-black tree, ... ) has the additional property that the height of
the tree is O(log(n)). Inserting/deleting in these trees can be done in time proportional to the height of the tree
while maintaining the balance.

� Dictionary: Θ(1) create; Θ(log(n)) lookup/insert/delete/min/max (min/max can be made O(1) by explicit
tracking)

� Priority Queue: Θ(1) create; Θ(log(n)) insert/max/extract max

Heaps- A complete binary tree (reading top to bottom left to right, no holes) that maintains the ’heap property’: for
a node x, the priority of node x is higher than the priority of either of x’s children. Thus the highest priority
node is the root of the tree. We can extract-max by swapping the root for the last leaf and ’bubbling-down’ the
new root into its rightful place. Similarly we can insert a new last leaf and ’bubble up’ that last leaf to it rightful
place. While the balanced binary tree dominates heaps in operations, heaps are more memory compact.

� Priority Queue: Θ(1) create/max, Θ(log(n)) insert/extract-max, Θ(n) search.

Hash Tables- We store n elements in a m-slot array T . Define a hash f unction h : K → {1, ...,m}, where K is
the keyspace (set of all possible keys), and h "looks random". Element x will be stored in a linked list in
T [h(x)]. (This is "hashing with chaining": we resolve "collisions"–that is, two keys that hash to the same slot–
by creating a linked list of the elements in that cell.) To look up element y, we perform linear search on the
linked list T [h(y)]. The benefit of hashing: if we have a good hash function that spreads out the keys close to
uniformly over the cells of the table, then each linked list will be short, and we’ll get excellent performance.
The disadvantage of hashing: if we are asked to sort a particularly bad set of keys for our h, then we’ll merely
replicate the performance of an unlinked linear list.

� Dictionary: Θ(1) create; AVERAGE-CASE: Θ(1) lookup/insert/delete, but WORST-CASE: Θ(n) lookup/insert/delete.
Even the average-case running time is Θ(n) for min/max though.

Union Find- A data structure that maintains the connected components in a graph and supports unioning of these
components–as though edges were being added to the graph. Thus data structure is very useful for component-
based algorithms like Kruskal’s.

� Record Pointers: O(n) create with data; O(log(n)) Find(u) that returns the name of the component contain-
ing node u, and O(log(n)) Union(A, B) to merge the A and B components into a single set.
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Chapter 3

Deterministic Computation

§3.1 O-Notation
Algorithms are step-by-step processes which, in practice, vary wildly in their resource usage (time, space, etc.) based
on the particular problem instance under consideration. Some of this variation is due to the size of the instance (in
general, bigger instances use more resources), some to algorithm-specific properties of the instances. While it’s easy to
account for the former, the latter requires an overwhelming verbosity to accurately capture–a price that is, ultimately,
far too high. O-notation, our means of quantifying the resource usage of an algorithm, is thus defined as a worst-case
analysis, as always giving bounds which hold for even the worst instances of a given size.

Having left the size of instances as an open parameter, our notation naturally falls into a functional representation
taking a variable, normally n, for the size of the input. More generally, the resource usage of an algorithm will be
captured by functions from N → N, e.g. n, n2 + 3, and 3n. Later, it will be useful to utilize real-valued functions
like
√

n and log(n); appearances to the contrary, these functions too are to be thought of as functions over N, namely
max{d f (n)e, 0} for a real-valued f . Of course, rather than try to give a function which perfectly represents a given
algorithm’s usage of a resource–a tall order–our characterization captures resource usage in a more general sense. For
two functions f : N → N and g : N → N, f (n) = O(g(n)) (pronounced, " f (n) is big-oh of g(n)" or " f is of the
order of g") if and only if there are n0, c ∈ N such that f (n) ≤ c · g(n) for every n ≥ n0. Informally, f (n) = O(g(n))
means that f eventually uses the resource no faster than g, modulo a constant. Changing emphasis, this is also notated
g(n) = Ω( f (n)). Finally, if both f (n) = O(g(n)) and f (n) = Ω(g(n)), then we write f (n) = Θ(g(n)), meaning f and g
have the exact same rate of usage.

Given our work thus far, it’s easy to show that–for any p ∈ N, r > 1, and resource,

O(logp(n)) < O(np) < O(rn)

Complexity theorists and computer scientists often speak of problems as tractable or intractable and algorithms as
efficient or inefficient; the precise meaning of these terms depends on the resource under consideration–although,
later, we’ll see that they are not so disconnected as they first appear. The meanings for space and time are given below:

(Time) Efficient
An algorithm is efficient if and only if it has a
polynomial time bound; that is, its runtime is O(np)
for some p ∈ N.

(Time) Intractable
A problem for which no efficient algorithm exists
is intractable

(Space) Efficient
An algorithm is efficient if and only if it has a
logarithmic space bound; that is, its runtime is
O(logp(n)) for some p ∈ N.

(Space) Intractable
A problem for which no space efficient algorithm
exists is intractable

Properties

� Transitivity:

19
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� If f = O(g) and g = O(h), then f = O(h).

� If f = Ω(g) and g = Ω(h), then f = Ω(h)

� If f = Θ(g) and g = Θ(h), then f = Θ(h)

� Let k be a fixed constant, and let f1, f2, ..., fk and h be functions such that fi = O(h) for all i. Then, f1, f2, ..., fk =

O(h).

� Suppose that f and g are two functions (taking nonnegative values) such that g = O( f ). Then f + g = Θ( f ).

� Let f be a polynomial of degree d, in which the coefficient ad is positive. Then f = O(nd).

� For every b > 1 and every x > 0, we have logb(n) = O(nx). Note that the base b is often dropped because
loga(n) =

logb(n)
logb(a) , a constant change.

� For every r > 1 and every d > 0, we have nd = O(rn).

� The cost of storing a number of length n is log(n).

Some particularly tricky problems may require ingenious functions, say f (n) = n3 on even n, but only 1 on odd. It
follows that f (n) , O(n2) and f (n) , Ω(n2).



3.2. MODELS OF COMPUTATION 21

§3.2 Models of Computation
It’s well-accepted that Turing machines are a satisfactory model of computation, but–here–our concern is much more
specialized than just computation generally. We wish to characterize the relative speed with which various algorithms
use a particular resource; it is by no means obvious that Turing machines provide a stable foundation upon which
to build, that choosing a different model of computation may not, for instance, make a Turing intractable problem
suddenly tractable.

In truth, however, this seems to not be the case. Taking Turing machines as our model of computation, we define–
for instance–the length of a computation in the obvious way via steps taken by the Turing machine, taking the size
parameter n in our O,Ω,Θ notation to be the length of the input string. Defining the same notions across different
models of computation, none yet has been found for which the difference in bounds is not polynomial, e.g. a O( f (n))
algorithm under one model always becomes an O( f (n)2) algorithm under the other. This has lead to a quantitative
extension of Church’s much beloved thesis: any reasonable model of computation and the time performance thereof
gives a model that is equivalent to Turing machines within a polynomial. Put slightly differently, so long as our
classes are closed under polynomial changes in runtime, we may divide problems into complexity classes based on the
runtimes in which they can be solved, independent of the actual model of computation in use.

Of course, it remains to decide what kind of objects problems should be taken to be; naïvely (but naturally!) we
may wish to take problems to simply be the set of their ‘yes’ instances (ignore, for the moment, that not all problems
are decision problems). Thus, e.g., Reachability will be the set of all triples 〈G, 1, n〉 for which node 1 can reach node
n in graph G. The immediate downside to this suggestion is, of course, twofold:

(1) Not all problems are triples containing a graph and two of its nodes; in general, problems will take an infinite
number of different forms with no common features

(2) Most models of computation do not take graphs, flows, networks, etc. as inputs; the form of the problem is thus
misleading since, by necessity, the Turing machine (or whatever model of computation is in use) is not really
working with the graph or nodes.

Our actual choice is quite close to the naïve suggestion above; instead of allowing actual abstract objects like graphs,
nodes, networks, etc. all problems are sets of strings over some alphabet Σ; that is, for some Σ, any problem P is a
subset of Σ∗.1

Syntactic Complexity Class
A set of problems forms a syntactic complexity class if and only if it is the set of problems that can be solved by
abstract machines of some particular type M using O( f (n)) of some specific resource(s) R for some f ∈ Γ where Γ

is a polynomially-closed set of functions from N to N and n is the size of the input
2 3

3.2.1 Space Bounds
As we saw earlier, quantifying the time used by a particular model of computation is usually a rather simple task; on
the surface, space seems just as easy. Consider the case of Turing machines. An obvious and natural suggestion is to
take the space required by the machine on a particular input string s to be the maximum number of cells in the tape
used throughout the computation. Contra intuition, however, this definition is taken to represent a serious overcharge
for many algorithms by complexity theorists.

The problem is that the Turing machine is being charged–regardless of how little or how much space is used in
the actual computation–for both the space necessary to store the input string and the space necessary to represent the
output, collapsing an distinction between algorithms that use only, for example, Θ(log(n)) space for the rest of the
computation and algorithms which use Θ(n4). To fix this, we need a means of accurately calculating how much space
is needed for the actual computation; one which rules out, for example, algorithms which attempt to achieve artificially
low space bounds by simply overwriting and using the cells containing the initial input.

1A similar move is made in computability theory proper, but rather than arbitrary alphabets Σ, we restrict to N...why isn’t the same done here?
2Various authors define complexity classes in a manner which allows for them to fail to be closed under polynomial changes; this seems strange

since (1) they will change based on the model of computation and (2) such classes seem to never be considered
3Arbitrary Linear Speedup grants justification for O notation...but if we want complexity classes to be stable across models of computation this

is already enough to justify its use
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The solution, as it will often be, is to shift our model of computation to one which is both similar and provably
equivalent, but which makes the resource quantification easy. In this case, we introduce Turing machines with three
tapes: the first a read-only tape upon which the input is written to start the computation, the second a permanent,
write-only tape which the final output is taken from, and the third a read/write tape which operates as normal. Space
usage is then defined as the maximum number of cells used on the read/write tape.

The general point here is twofold; in the particular case of space as a resource, algorithms shouldn’t be charged
for the space used to store the initial input, nor the space used to write the final output. Instead, merely the space
used to turn the former into the latter. More generally, however, space gives a paradigmatic example of how resource
quantification problems can be solved; namely by constructing a new similar, equivalent-up-to-a-polynomial model of
computation which makes the resource consumption explicit and easily quantified.

3.2.2 On Decision Problems
It’s easy to in the following deluge of notation and results, but our topic matter will, shortly, narrow significantly;
rather than all problems, the notation and definitions below prioritize the consideration of decision problems (tasks in
which everything is either a ‘yes’ or ‘no’ answer), problems that cannot be rephrased into a decision variant will be
forcibly shunted to the side. This isn’t, of course, a particularly happy situation, and we will eventually return to these
non-decision problems. Nevertheless, this choice allows for easy definitions as well as a host of foundational results.
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§3.3 The Deterministic Hierarchies

Proper Complexity Functions
a function f : N→ N is a proper complexity function if and only if it is both non-decreasing and there is an
algorithm which takes a string of any length n as input and returns a string of length f (n) using time O(n + f (n))
and space O( f (n))

� Proposition 3.1.
Suppose a deterministic (or, later, a non-deterministic) algorithm M decides a set X ⊆ N within time/space f (n),
where f is a proper complexity function. Then, there is an algorithm which decides the language in time/space
O( f (n)), halting precisely at f (n) time/space.

Fixing a model of computation, we introduce the following notation:

� Notation. For a proper complexity function f , define dtime( f )/dspace( f ) as the class of
problems decidable by a deterministic model of computation in O( f ) time / space. Similarly,
we will often use k to represent a union of functions over N, e.g.

Deterministic Time Complexity Classes Deterministic Space Complexity Classes

ltime = dtime(logk(n)) =
⋃
m∈N

dtime(logm(n)) l = dspace(logk(n)) =
⋃
m∈N

dspace(logm(n))

P = ptime = dtime(nk) =
⋃
m∈N

dtime(nm) pspace = dspace(nk) =
⋃
m∈N

dspace(nm)

exptime = dtime(2nk
) =
⋃
m∈N

dtime(2nm
) expspace = dspace(2nk

) =
⋃
m∈N

dspace(2nm
)

2-exptime = dtime(22nk

) =
⋃
m∈N

dtime(22nm

) 2-expspace = dspace(22nk

) =
⋃
m∈N

dspace(22nm

)

In general, it will be helpful to refer to the complements of various decision problems; that is, the decision problem
for which all ‘no’ instances of the original are ‘yes’ instances and vice versa.

� Notation. Given a decision problem Problem, its complement will be denoted Problem.
Similarly, we will often speak of the complements of a complexity class: Given a complexity
class C, its complement will be denoted ‘coC’ and defined by {A ⊆ Σ∗ : A ∈ C}

� Proposition 3.2 (Deterministic Closure under Complementation).
Any deterministic time or space complexity class is closed under complementation

3.3.1 The Deterministic Time Hierarchy Theorem
Define, for any class of abstract computing machines,

H f := {〈M, x〉 : Me, f (x)(x)↓}

� Lemma 3.1.
If f (n) ≥ n and the class of computing machines is multi-tape Turing machines, then H f ∈ dtime( f (n)3)
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Proof Sketch.

� Lemma 3.2.
If f (n) ≥ n and the class of computing machines is multi-tape Turing machines, then H f < dtime( f (b n

2 c))

Proof Sketch.
Suppose it is; define

� Theorem 3.1 (The Time Hierarchy Theorem).
If f (n) ≥ n is a proper complexity function, then the class dtime( f (n)) relative to multi-tape Turing machines is strictly
contained within dtime(( f (2n + 1))3) relative to multi-tape Turing machines

Of course, being relative to multi-tape Turing machines, the results above might at first appear to be of limited
interest; recall, however, the models of computation differ by at most a polynomial amount with respect to one another.
Thus,

� Corollary (P ⊂ exptime).
The complexity class P is a proper subset of exptime

...

ltime

ptime

exptime

2-exptime

Figure 3.1: Deterministic Time Hierarchy
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3.3.2 The Deterministic Space Hierarchy Theorem
Mimicking the lemmas established above for time, we can also show that:

� Theorem 3.2 (The Space Hierarchy Theorem).
If f is a proper complexity function, then dspace( f (n)) is a proper subset of dspace( f (n) log( f (n)))

...

l

pspace

expspace

2-expspace

Figure 3.2: Deterministic Space Hierarchy
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§3.4 Classifying Problems

Contra much of the presentation up until this point, not all complexity classes are created equal; practical problems
aren’t evenly distributed across the deterministic hierarchies, and so particular classes are of considerably more interest
than others.

3.4.1 Boolean Logic

Formal logic is, unsurprisingly, an ideal area in which to construct problems; we survey a few basic results in this area.

Sat
Given: a formula of boolean logic in conjunctive normal form
Return: whether or not the formula is satisfiable

� Proposition 3.3 (Sat ∈ exptime).
Sat is solvable by deterministic models of computation in exponential time; that is, SAT ∈ exptime

Proof Sketch.
EXPSAT(ϕ):

1 for each possible assignment do
2 if ϕ is true under the assignment :
3 return True

4 return False

� Fact. Whether or not Sat is in P is an open problem, although it is heavily suspected that it is not.

While Sat is in exptime, a special, but still useful case proves considerably easier.

Horn Clause
A clause containing at most one positive (non-negated) literal

HornSat
Given: a formula of boolean logic in conjunctive normal form all of whose clauses are
Horn clauses
Return: whether or not the formula is satisfiable

� Proposition 3.4 (HornSat ∈ P).
HornSat is solvable by deterministic models of computation in polynomial time; that is, HornSat ∈ ptime
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3.4.2 Boolean Circuits

Alternatively, boolean formulas and the problem of satisfiability can be conceived of as, surprisingly enough, a problem
over circuits:

Boolean Function
An n-ary boolean function f is a function f : {True, False}n → {True, False}

It’s obvious that any given formula can be associated with the boolean function which it defines; similarly, it’s easy to
recast boolean functions into a circuit representation:

Boolean Circuit
A boolean circuit is a graph C = (V, E) where

(i) the graph has no cycles (and so we may assume edges always go from lower numbered nodes to higher)

(ii) every node i has a sort s(i) such that s(i) ∈ {∧,∨,¬,>,⊥} ∪ {x1, x2, . . . }

(a) For any node i, if s(i) ∈ {>,⊥} ∪ {x1, x2, . . . }, the indegree of i is 0

(b) For any node i, if s(i) ∈ {¬}, the indegree of i is 1

(c) For any node i, if s(i) ∈ {∧,∨}, the indegree of i is 2

(iii) (Optional) there is only one node with outdegree 0

In this context, nodes are called gates; nodes with indegree 0 inputs. Nodes with an outdegree of 0 are outputs.

∧

¬∧

∨∧

¬¬∨

> x1 x2

Figure 3.3: A Boolean Circuit

Circuit Sat
Given: a Boolean circuit C

Return: whether or not there is an assignment of truth values to the inputs for which C
outputs true

It’s easy to see that circuit sat is on par with sat, and so we expect it to lie in exptime. Consider, however, a
slightly easier variation:

Circuit Value
Given: a Boolean circuit C with no variable gates
Return: whether or not C outputs true
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� Proposition 3.5 (Circuit Value∈ ptime,l).
Circuit Value lies in both ptime and l

Proof Sketch.
For the time bound,

CircuitValue(C):

1 for i from 1 to n do
2 Compute the value of node i; if node i is true and has outdegree == 0 :
3 return True

4 return False

and for the space bound,

CircuitValueRec(C):

1 return FindValue(C, n)

FindValue(C,gate):

1 if indegree(gate) == 0 :
2 return value of gate

3 if indegree(gate) == 1 :
4 return not(FindValue(C, input gate))

5 if sort(gate) == ∧ :
6 return FindValue(C, input gate 1) AND FindValue(C, input gate 2)

7 else:
8 return FindValue(C, input gate 1) OR FindValue(C, input gate 2)

3.4.3 Graph Theory
The first-order language of graph theory, LG, has signature 〈G〉 consisting in only a single binary relation symbol; this
relation is–intuitively–taken to assert that there exists an edge from its first input to its second. As usual, any sentence
ϕ ∈ LG represents a property of graphs and can be viewed as giving rise to a decision problem. Rather than name
these individually, we take them as instances of a larger decision problem:

ϕ-Graphs

Given: a sentence ϕ ∈ LG and a model M of LG

Return: whether or not M  ϕ

� Theorem 3.3 (ϕ-Graphs ∈ ptime).
ϕ-Graphs is solvable in polynomial time; that is, ϕ-Graphs ∈ ptime

Proof Sketch.
Induction on formulas

� Theorem 3.4 (ϕ-Graphs ∈ l).
ϕ-Graphs is solvable in O(log(n)) space; that is, ϕ-Graphs ∈ l
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Proof Sketch.

The results above are, quite clearly, powerful; classifying a host of decision problems in one sweep. Unfortunately,
the assumption that ϕ ∈ LG limits us more than it might, at first, seem to:

� Theorem 3.5 (Reachability is not Definable in LG).
There is no ϕ(x, y) ∈ LG such that ϕ(x, y) defines Reachability from x to y.

Reachability is, however, in ptime, so–perhaps–there is a natural extension of first-order logic which correctly
captures all and only those problem which are in ptime. The most natural candidate is, of course, second-order logic.
It’s easy to show that Reachability is, in fact, definable in the second-order equivalent of LG; unfortunately, it’s just
as easy to show that Hamilton Path–a problem suspected to not reside in ptime–is also definable.

Hamilton Path
Given: a graph G

Return: a path on G which visits each node exactly once

Luckily, we’ve already encountered a natural class of formulas which serve to reduce the complexity of the problems
expressible:

� Theorem 3.6.
For any existential, Horn, second-order sentence ∃Pϕ, the corresponding decision problem ∃Pϕ-Graphs is in ptime

4

Proof Sketch.

Moving to undirected graphs, we have a problem familiar to anyone who’s taken an algorithms course:

Min Cut
Given: an undirected graph G and a goal K

Return: whether or not there exists a cut (partition of V) of value less than of equal to K

Here, as there, the solution is to leverage one of the polynomial time maximum flow algorithms:

� Proposition 3.6.
Min Cut ∈ ptime

Proof Sketch.
Pick a node in G and run a maximum flow algorithm to every other node; the smallest such flow gives
the minimum cut in the normal way.

4Pg. 116, why do we only need to consider a string of universals?
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3.4.4 Sets and Numbers

Linear Programming
Given: a system of linear inequalities in n variables with integer coefficients
Return: whether or not the system has a solution

� Proposition 3.7.
Linear Programming ∈ ptime
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§3.5 Reduction

(Efficient) Reduction
Given two sets L1 and L2, L1 is reducible to L2 if and only if there is a function R deterministically computable in
O(log(n)) space such that, for any x,

x ∈ L1 ⇔ R(x) ∈ L2

� Proposition 3.8.
P, l, pspace, and exptime are closed under reduction

Proof Sketch.
Suppose not; it’s easy to show that the corresponding classes collapse into one

3.5.1 PTIME-Complete Problems

� Theorem 3.7 (Circuit Value is ptime-Complete).
The problem Circuit Value is ptime-Complete

Proof Sketch.
By earlier, Circuit Value ∈ ptime. Let A be an arbitrary ptime-decidable set over some alphabet
Σ. By definition, then, it is decided by some particular deterministic model of computation M (pick your
favorite type). Unfortunately, it’s now necessary to delve into the implementation / construction of M
and design an l algorithm which encodes M into a circuit. For the particular case of multi-string Turing
machines, see Papadimitriou pg. 170.

After proving Fagin’s theorem (see nptime complete problems), it’s tempting to think that the converse of our
result for ptime holds as well; unfortunately, this is not the case. In particular, restricting to horn clauses engenders
a fundamental lack of expressibility, the inability to define a successor function and thus count. To achieve a parallel
result for ptime, however, adding this to our language proves sufficient to overcome the difficulties:

� Theorem 3.8.
The class of all graph-theoretic properties expressible in Horn existential second-order logic with successor is precisely
P

Proof Sketch.
Identical to Fagin’s theorem

� Corollary (Horn Sat is ptime-Complete).
The problem Horn Sat is ptime-Complete

Proof Sketch.
This result follows from proving that ptime is exactly the class of problems...and I don’t quite get this

5

5This doesn’t really make sense to me; is it that any ptime problem is equivalent to some ptime problem involving ϕ-graphs?
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Chapter 4

Nondeterminism

§4.1 Nondeterministic Machines

Reasonable models of computation are–surprisingly–not the only models of computation which hold considerable
interest to complexity theorists; indeed, many of the most famous problems in complexity theory are simply to give
a rigorous proof that abstract machines of such and such a type are, up to a polynomial, more/less/just as efficient as
some more traditional model of computation. The most famous of these alternative machines are the nondeterministic
variants on the traditional models of computation.

By construction, the traditional models of computation are deterministic; a given input always generates pre-
cisely the same behavior, either failing to halt or both halting and returning some specific output. Introducing non-
determinism is simply to break this tight connection between input and output, allowing the machine/function/what-
have-you to sometimes behave one way and sometimes behave another for no reason whatever. Such a non-deterministic
machine is said to accept an instance of a decision problem if and only if some sequence of non-deterministic choices
causes the machine to accept (even if others do not). The complexity of these non-deterministic machines, however, is
still defined as an upperbound on any given computation. At face value, this seems to represent a serious undercharge;
non-deterministic machines are, just like deterministic machines, charged resources based only on the overall ‘depth’
of their computational activity. Unlike their deterministic counterparts, however, nondeterministic machines have the
capability to branch, to explore different computation paths while only accruing costs based on the longest such path.
The general picture, then, is as follows:

Figure 4.1: Deterministic Computation

33
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Figure 4.2: Nondeterministic Computation
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§4.2 Nondeterministic Complexity Classes

Adding nondeterminism to a standard model of computation produces a new class of abstract machines–allowing, as
earlier, the definition of ntime and nspace.

ntime/nspace
For a proper complexity function f , define ntime( f )/nspace( f ) as the class of problems solvable by a
nondeterministic model of computation in O( f ) time / space.

This, as before, gives rise to a sequence of new, nondeterministic complexity classes:

Nondeterministic Time Complexity Classes Nondeterministic Space Complexity Classes

nltime = ntime(logk(n)) =
⋃
m∈N

ntime(logm(n)) nlspace = nspace(logk(n)) =
⋃
m∈N

nspace(logm(n))

np = nptime = ntime(nk) =
⋃
m∈N

ntime(nm) npspace = nspace(nk) =
⋃
m∈N

nspace(nm)

nexptime = ntime(2nk
) =
⋃
m∈N

ntime(2nm
) nexpspace = nspace(2nk

) =
⋃
m∈N

nspace(2nm
)

2-nexptime = ntime(22nk

) =
⋃
m∈N

ntime(22nm

) 2-nexpspace = nspace(22nk

) =
⋃
m∈N

nspace(22nm

)

4.2.1 Nondeterministic Hierarchy Theorems

� Theorem 4.1 (Nondeterministic Time Hierarchy Theorem).
For any two proper complexity functions f and g such that f (n + 1) is O(g(n)), then there is a problem which is in
ntime(g(n)), but not ntime( f (n))

Proof Sketch.
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...

nltime

nptime

nexptime

2-nexptime

Figure 4.3: Nondeterministic Time Hierarchy

� Theorem 4.2 (Nondeterministic Space Hierarchy Theorem).
For any proper complexity function f , nspace( f (n)) ⊂ nspace(log( f (n)) f (n))

Proof Sketch.
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...

nlspace

npspace

nexpspace

2-nexpspace

Figure 4.4: Nondeterministic Space Hierarchy
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§4.3 Classifying Problems
Continuing our cubbyhole mathematics from the previous chapter, we now have the capability to locate a host of
natural computational problems in our new, nondeterministic hierarchies.

4.3.1 Boolean Logic
Turing first to one of our most fundamental problems,

� Proposition 4.1 (sat ∈ nptime,npspace).
Sat is solvable by nondeterministic models of computation in polynomial time and in polynomial space; that is,
sat ∈ nptime and sat ∈ npspace

Proof Sketch.
A single algorithm suffices to prove both:

NSAT(ϕ):

1 for each new literal encountered do
2 Nondeterministically select T or F;

3 if the assignment satisfies ϕ :
4 return True

5 else:
6 return False

4.3.2 Graph Theory
Similarly,

� Proposition 4.2.
Hamilton Path is in nptime and npspace

Proof Sketch.
NHamiltonPath(G):

1 for i from 1 to n do
2 Nondeterministically select the next node in the path;

3 if no node appears more than once in the path :
4 return True

5 else:
6 return False

Our previous result connecting second-order logic and ptime can also be extended to establish nptime as an
upperbound on the complexity of decision problems generated from second-order sentences of a particular type:

� Theorem 4.3.
For any existential, second-order sentence ∃Pϕ from the second-order language of graphs, the problem ∃Pϕ-Graphs
is in nptime
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Proof Sketch.
The algorithm guesses non-deterministically an extension for P after which the problem is reduced to a
first-order ϕ-Graphs instance

Shifting into the domain of undirected graphs (G = (V, E) where E contains unordered pairs) gives a host of natural
computational problems:

Independent Set
Given: an undirected graph G and a goal K

Return: whether or not there is a independent set (set of vertices unconnected by edges)
of size K

Clique
Given: an undirected graph G and a goal K

Return: whether or not there is a clique (set of vertices with all possible edges between
them) of size K

Node Cover
Given: an undirected graph G and a goal K

Return: whether or not there is a node cover (set of vertices such that any edge of G is
connected to at least one) of size K

A bit of thought shows that all three of these problems are inextricably related; any instance of cligue on a graph G
is an instance of independent set on the inverted graph G−1. Similarly, I is a maximal independent set if and only
if V − I is a minimal node cover. It’s easy, then, to establish the following sequence of results:

� Proposition 4.3.
Independent Set ∈ nptime,npspace

� Corollary.
Clique ∈ nptime,npspace

� Corollary.
Node Cover ∈ nptime,npspace

4.3.3 Numbers and Sets
To continue the trend established thus far, there are a large number of problems residing in nptime and npspace
involving sets and numbers; a brief listing is given below:

1

Tripartite Matching
Given: three sets of size n–A, B, C– and a ternary relation T ⊆ A × B ×C

Return: a set of size n containing triples from T , no two of which have a component in
common

1Are these supposed to be decision problems?
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Set Covering
Given: a goal K and a family of sets F = {S 1, . . . , S n} all of which are subsets of a finite
set U

Return: a set of K sets whose union is U

Exact Cover by 3-Sets
Given: a family of sets F = {S 1, . . . , S n} all of which contain 3 elements and are subsets
of a finite set U of size 3m for m ∈ N

Return: a set of n sets whose union is U

Set Packing
Given: a goal K and a family of sets F = {S 1, . . . , S n} all of which are subsets of a finite
set U

Return: a set of K pairwise disjoint sets

Integer Programming
Given: a system of linear inequalities in n variables with integer coefficients
Return: whether or not the system has an integer solution

Knapsack
Given: a weight limit W and a set of n items each with a positive weight wi and positive
value vi

Return: a set of items which gives the highest value possible while respecting the weight
limit

Bin Packing
Given: a number of bins B, a capacity for the bins C, and a set of n natural numbers
a1, . . . , an

Return: whether or not the numbers can be partitioned among the bins in a way that
respects the capacity constraint C
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§4.4 Unifying the Hierarchies

At present, we have constructed four distinct hierarchies and entirely ignored the possibility of crossing resource /

model of computation lines and relating classes in one to those of another–in point of fact, this is one of the primary
concerns of complexity theory.

4.4.1 The Reachability Method

One of the primary proof techniques for proving cross-hierarchy relations is to translate a problem in one class into an
instance of a problem known to lie in the other; Reachability is particularly well-suited for this, as we show below.

� Theorem 4.4 (Relations Between Classes).
Suppose that f is a proper complexity function. Then, for any reasonable model of computation, we have (i) − (iii)
along with a variation on (iv):

(i) dtime( f (n)) ⊆ ntime( f (n))

(ii) dspace( f (n)) ⊆ nspace( f (n))

(iii) ntime( f (n)) ⊆ dspace( f (n))

(iv) nspace( f (n)) ⊆ dtime(clog(n)+ f (n))

Proof Sketch.
Parts (i) and (ii) are trivial; let A ⊆ N be an element of ntime( f (n)). By definition, there exists a
non-deterministic machine M which decides A; we use it to construct a deterministic M′ deciding A in
O( f (n)) space. Our general strategy is to decide A via exhaustive use of M′. Assuming a reasonable
implementation of non-determinism, M can not only generate a sequence of non-deterministic choices for
M (the length of the sequence must be O( f (n)) since M is), it can list out all possible such sequences–
deleting each from memory before writing the next. Note next that, given a sequence of choices, the space
necessary to run M on those choices is O( f (n)) since only O( f (n)) characters can be written in O( f (n))
time. Putting these together, we may run M on all possible sequences of choices all the while using
O( f (n)) space–just as required.

For (iv), we demonstrate with a k-string nondeterministic machine M with dedicated input and output
tapes. Recall that the configuration of a Turing machine on input x is a snapshot of its computation on x
at some point in time; for a Turing machine as described above, any configuration can be represented as
a number ≤ n and a tuple of strings with length 2k + 1, each entry of which is at most f (n) (the contents
of all the tapes). Given a fixed alphabet Σ, there are thus at most n(2k + 1)|Σ| f (n) possible configurations.
Thus, for a suitable choice of c1 which need only depend on the Turing machine, we have an upperbound
of nc f (n)

1 = clog(n)+ f (n)
1 .

Define next the configuration graph of M, denoted G(M, x) for input x, by taking the set of nodes to be
all possible configurations of M on x and placing an edge between two configurations if and only if M
transitions from the former to the latter (a simple procedure). Deciding whether x ∈ A for some A ⊆ N is
thus equivalent to finding a path from the starting configuration to the accepting one in the defined graph–
that is, Reachability. Taking a generous c2n2 bound on reachability, we have a bound of c2c2(log(n)+ f (n))

1
which gives the desired bound for c = c2

1c2.



42 CHAPTER 4. NONDETERMINISM

� Corollary (The Complexity Tower).

l ⊆ nlspace ⊆ ptime ⊆ nptime ⊆ pspace

By the space hierarchy theorem, we know also that l ⊂ pspace–but where precisely the inclusions are proper is still
unknown.

...

||?

||?

||?

||?

l

nlspace

ptime

nptime

pspace

Figure 4.5: The Complexity Tower

4.4.2 Nondeterminism and Space

Thus far, our attempts to combine the hierarchies have been largely symmetric, an observation which encourages the
belief the nondeterminism is no more powerful space-wise than time-wise. Interestingly, this belief is likely false;
the following sequence of results shows that, pending resolution of ptime = nptime, adding nondeterminism for
space is far weaker than for time. Previously, we established that nspace( f (n)) ⊆ dspace(klog(n)+ f (n))–can we do better?

� Theorem 4.5 (Savitch’s Theorem).
Reachability ∈ dspace(log2(n)) for multitape Turing machines
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Proof.
Let G be a graph with n nodes, x and y nodes of G, and i ≥ 0.

Path(G,x,y,i)

1 if i == 0 :
2 if x == y or x and y are adjacent :
3 return True

4 else:
5 for each node z do
6 if Path(G, x, z, i − 1) and Path(G, z, y, i − 1) :
7 return True

8 return False

A bit of thought shows that Path(G, x, y, i) returns true if and only if there is a path from x to y in G of
length at most 2i–making i = log(n) sufficient for our purposes. The given algorithm is, as a means of
solving Reachability, obviously quite time intensive; it’s space requirements, however, are incredibly
minimalistic. Note that the only things which must be stored are the inputs for each successive call–
O(log2(n)) at maximum depth. �

� Corollary.
nspace( f (n)) ⊆ dspace( f 2(n)) for any proper complexity function f (n) ≥ log(n)

Proof Sketch.
Combine the previous results

� Corollary.
pspace = npspace

That is, nondeterminism adds nothing to the computational power of polynomially bounded space algorithms. Working
in another direction,

� Theorem 4.6 (The Immerman-Szelepscényi Theorem).
Given a directed graph G and a node x, the number of nodes reachable from x in G can be computed by a nondeter-
ministic machine within space log(n)

Proof Sketch.

� Corollary.
If f ≥ log(n) is a proper complexity function, then nspace(( f (n)) = conspace( f (n))

Proof Sketch.
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§4.5 Reduction
The intuition behind reductions are exactly those of computability theory generally; the major difference lies in the
difference in constraints on the reduction:

Efficient Reduction
Given two sets L1 and L2, L1 is reducible to L2 if and only if there is a function R deterministically computable in
O(log(n)) space such that, for any x,

x ∈ L1 ⇔ R(x) ∈ L2

� Proposition 4.4 (Closure Under Reduction).
ptime, nptime, conptime, l, nlspace, pspace, and exptime are closed under reduction

Proof Sketch.
Suppose not; note that the relevant classes collapse into one, contra the hierarchy theorems

4.5.1 NPTIME-Complete Problems

Boolean Logic

� Theorem 4.7 (Cook’s Theorem).
sat is nptime-complete

Proof Sketch.
By earlier, sat ∈ nptime. It’s easy to show that Circuit Sat reduces to Sat. Let A be an arbitrary
nptime-decidable set over some alphabet Σ. By definition, then, it is decided by some particular non-
deterministic model of computation M (pick your favorite type). Like Circuit Value, our strategy is to
design an l algorithm R which encodes M into an instance of Circuit Sat. Again, the particular details
of the proof vary greatly depending on M; see Papadimitriou pg. 170 for an example using multi-string
Turing machines.

The nptime-complete status of sat immediately gives rise to a related problem: characterizing where, exactly,
the jump from ptime to nptime occurs (if there is one). This has naturally spawned a number of weakenings and
variations on sat:

3-sat
Given: a Boolean formula ϕ in CNF with exactly 3 literals in each clause
Return: whether or not ϕ is satisfiable

2-sat
Given: a Boolean formula ϕ in CNF with exactly 2 literals in each clause
Return: whether or not ϕ is satisfiable

Each of the above are special cases of sat, and thus are members of nptime,npspace. It is not, however, obvious
that they don’t also reside in a lower class; indeed, it’s easy to show that the latter does:

� Proposition 4.5 (2-sat ∈ ptime).
The problem 2-sat lies in the complexity class ptime
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Proof Sketch.
Our strategy is, surprisingly enough, to reduce 2-sat to several instances of reachability:

2SAT(ϕ):

1 for each clause in ϕ do
2 Add the literals to a set V;
3 Add an edge (α, β) between them if and only if the clause is ¬α ∨ β or β ∨ ¬α;

4 for each unnegated node x in V do
5 if ¬x ∈ V AND Reachable(G,x,¬x) :
6 return False

7 return True

It now suffices to show that a formula is unsatisfiable if and only if there is at least one path from an x to
¬x in our generated graph, G. This done, we have that 2-sat ∈ nlspace, and thus 2-sat ∈ ptime.

By itself, this fact isn’t very interesting; however,

� Proposition 4.6.
3-sat is an nptime-complete problem

Proof Sketch.
A direct reduction of sat is possible; note that, for example, p ∨ q ∨ r ∨ s can be split into p ∨ q ∨ t and
r ∨ s ∨ ¬t where t is a new propositional variable appearing nowhere else in the formula.

In other words, the move from two to three literals crosses the (presumed) boundary between ptime and nptime;
exploring the boundary further,

max 2-sat
Given: a Boolean formula ϕ in CNF with 2 literals in each clause and a threshold K

Return: whether or not there is an assignment which makes at least K clauses in ϕ true

� Proposition 4.7.
max 2-sat is nptime-complete

naesat
Given: a Boolean formula ϕ in CNF with exactly 3 literals in each clause
Return: whether or not there is a truth assignment which doesn’t set all three literals in
any clause to the same value

� Proposition 4.8.
naesat is nptime-complete
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Graph Theory

Picking up the threads of our earlier work showing second-order existential formulas lie in nptime,

� Theorem 4.8 (Fagin’s Theorem).
The class of all (directed) graph-theoretic properties expressible in existential second-order logic is precisely nptime

Proof Sketch.
Since we’ve already shown that deciding any existential, second-order property lies in nptime, it only
remains to show that any nptime decidable property can be expressed as an existential second-order
formula. The strategy for doing so is simply to show that our second-order logic is expressive enough to
describe some class of nondeterministic machines. As usual, this just devolves into the details of particular
implementations.

We may also vindicate our assertion that Hamilton path is unlikely to reside in ptime:

� Proposition 4.9.
Hamilton path is an nptime-complete problem

Proof Sketch.
The obvious nondeterministic algorithm and clever use of 3-SAT will work (Papadimitriou 191)

Turning to undirected graphs, it should come as little surprise that

� Proposition 4.10.
Independent Set is an nptime-complete problem

Proof Sketch.
A clever transformation on 3-SAT suffices

� Corollary.
Clique is an nptime-complete problem

� Corollary.
Node Cover is an nptime-complete problem

Another undirected graph problem, min cut, was encountered classifying problems in the deterministic hierarchies;
the corresponding maximization problem shows that minimization and maximization need not be computationally
equivalent:

Max Cut
Given: an undirected graph G and a goal K

Return: whether or not there exists a cut of value at least K
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� Proposition 4.11.
Max cut is an nptime-complete problem

Proof Sketch.
The algorithm which nondeterministically choses a set of vertices (and thus a cut) shows max cut ∈
nptime; hardness can be shown by reducing, for example, naesat (Papadimitriou 191)

A simple variation on this problem shows, however, that this need not be the case:

Max Bisection
Given: an undirected graph G and a goal K

Return: whether or not there exists a cut of value at least K which evenly splits the nodes
of G

Bisection Width
Given: an undirected graph G and a goal K

Return: whether or not there exists a cut of value no more than K which evenly splits the
nodes of G

� Proposition 4.12.
Max Bisection is an nptime-complete problem

Proof Sketch.
A simple trick with max cut suffices

� Proposition 4.13.
BisectionWidth is an nptime-complete problem

Proof Sketch.
Note the connection between max bisection and the complement of G

Sets and Numbers

Unsurprisingly, each of the problems detailed earlier–tripartite matching, set packing, set cover, exact
cover by 3-sets, integer programming, knapsack, bin packing–is also nptime-complete.

4.5.2 Strong NPTIME-Completeness and Pseudpolynomial Algorithms

Strangely enough, not all nptime-complete problems are created equal; consider, for instance, knapsack. An
nptime algorithm is obvious, but what of a more clever dynamic programming approach? Consider, for instance,
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the following:

DynamicKnapsack (W,I,K)

1 for w from 1 to W do
2 Define V(w, 0) = 0;
3 for i from 0 to |I| − 1 do
4 Set V(i + 1,w) = max{V(w, i), vi+1 + V(w − wi+1, i)}
5 if V(i + 1,w) ≥ K :
6 return True

7 return False

2

At first glance it might appear that history has been made, that ptime = nptime has been proven. This is, of course,
not quite correct; the complexity of the above is O(nW). In more abstract terms, knapsack is not, as a result of this
algorithm, in ptime because the W in the analysis, while contributing log(W) to n, is not itself polynomially bounded;
it may grow exponentially while n grows only polynomially. knapsack is, in a very nontrivial sense, an nptime-
complete problem only because of the W parameter–if it were constrained to polynomial growth, the problem would–
provably–be a member of ptime. Problems like knapsack are called, for obvious reasons,pseudopolynomial.

Strongly nptime-Complete
A problem is strongly nptime-complete if and only if it is nptime-complete and remains so when we add the
constraint that there is a polynomial bound p(n) on the size of the integers appearing in any instance of size n

Given the previous discussion, it should be obvious that knapsack is not strongly nptime-complete; it is, how-
ever, alone in this regard. Every other nptime-complete problem presented thus far is, in fact, strongly nptime-
complete. Put another way, the computational complexity of the remaining problems doesn’t lie in one of two param-
eters getting out of hand, but rather some difficulty inherent in the problem itself.

2He’s switched to a budget formulation here
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§4.6 NPTIME and coNPTIME
Nondeterminism is fundamentally asymmetric, the criteria for returning a ‘yes’ and returning a ‘no’ vastly different.
It’s unsurprising, then, that the nondeterministic classes in general andnptime in particular offer our first opportunity
to study nontrivial interactions between a complexity class and its complement. Indeed, as we’ll soon see, both the
asymmetry and prevalence of nptime problems have a common basis.

4.6.1 NPTIME as Polynomial Certifiability
Thus far, every complexity class encountered has been syntactic, firmly based in abstract, formal models of computa-
tion rather than some abstract property of a class of machines or problems that one might think to delineate problem
complexity by. This latter approach produces semantic complexity classes–and, surprisingly enough, our syntactic
definition of nptime corresponds to a very natural one.

For a given alphabet Σ, let R ⊆ Σ∗ × Σ∗ be a binary relation on the strings of the language.

Polynomially Decidable
A binary relation R is polynomially decidable if and only if there is a ptime algorithm deciding it; that is, a
ptime algorithm for deciding whether or not 〈x, y〉 ∈ R for any tuple 〈x, y〉

Polynomially Balanced
A binary relation R is polynomially balanced if and only if there is a k ∈ N such that for all x and y, if 〈x, y〉 ∈ R,
then |y| ≤ |x|k

3

� Proposition 4.14.
Let A ⊆ Σ∗; A ∈ np if and only if there is a polynomially decidable and polynomially balanced relation R such that

A = {x : ∃y[〈x, y〉 ∈ R]}

Proof Sketch.
(⇒)
Given an x take y to be an encoded computation (of the relevant ptime algorithm) showing that x ∈ A.

(⇐)
Take the algorithm which guesses a y of ≤ |x|k, then checks if the guess is correct

Interpretationally, the problems of nptime all have the property that there is a succinct (read: polynomial) certificate
(or witness) for all ‘Yes’-instances of the problem. In other words, there is always something (the path required, the
satisfying assignment, etc.) that can be supplied which–using only polynomial time–can guarantee the truth of a ‘yes’
instance. This should not, at first glance, have been at all obvious given the original syntactic definition of nptime;
it does, however, explain why so many natural computational problems lie in nptime. Anytime a problem is asked
to construct some polynomially-complicated abstract object from a finite set possibilities, we have a problem which
lies in, at worst, nptime.

4.6.2 coNPTIME as Polynomial Disqualifiability
As simply the complement to nptime, the semantic characterization of nptime carries over readily to conptime;
just as nptime represents all problems which have polynomial witnesses to their membership, conptime contains

3It seems like this k needs to be fixed for the relation; otherwise this is remarkably weak (rewritten to do this)
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all problems which have polynomial witness to their non-membership. Perhaps the most basic example of this situation
is validity:

validity
Given: a Boolean formula ϕ in CNF
Return: whether or not ϕ is valid

Note that, in general, while there is no obvious polynomial witness to whether a given ϕ is valid, there is an obvious
polynomial witness which guarantees a given ϕ is not valid; that is, there is a polynomial disqualification to be found
in giving a truth assignment which falsifies ϕ.

� Proposition 4.15.
Let A ⊆ Σ∗; A ∈ conp if and only if there is a polynomially decidable and polynomially balanced relation R such that

Ā = {x : ∃y[〈x, y〉 ∈ R]}

It’s easy to extend many of our result in nptime to conptime; for example,

� Proposition 4.16.
If a set A ⊆ Σ∗ is nptime-complete, then its complement Ā = Σ∗ − A is conptime-complete

Proof Sketch.
Simply leverage and negate the reduction guaranteed by nptime-completeness

Indeed, nearly all of our nptime results either apply directly to conptime or do so with an obvious tweak (like
switching to universal second-order formulas in Fagin’s theorem).

As is the trend, however, the precise relation between nptime and conptime is still unknown; it’s conceivable
both that nptime = conptime and that the two classes are distinct. This said, the likely situation is the latter, and
thus the relationship diagrammed below:

ptime

nptimeconptime

Figure 4.6: nptime and conptime as distinct classes

It follows from this picture that both nptime and conptime have their own distinct classes of complete problems
and that any overlap occurs below this level.
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4.6.3 NPTIME ∩ coNPTIME
Putting our semantic characterizations of nptime and conptime to work, it must be that any problem residing
in nptime ∩ conptime has, for every instance, either a polynomial certificate or a polynomial disqualification.
Although it is tempting to think so, this doesn’t necessarily collapse the problem into P; e.g.,

Primes
Given: a number N

Return: whether or not N is prime

For any N, primes clearly has a polynomial disqualification, namely a number besides 1 and N which divides N.
Moreover, some number theory shows that it also has polynomial certificates, albeit of a rather esoteric sort (Papdim-
itriou 222-227). It follows that primes is an element of nptime ∩ conptime, but no known ptime algorithm
exists. That is, the following picture is suspected:

Primes

ptime

nptimeconptime
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Chapter 5

Function Problems

A basic understanding of the computational difficulty of a great many decision problems in hand, it’s time to reconsider
one of the basic limitations we’ve imposed on our work thus far and re-admit non-decision problems into our work.

Function Problem
A function problem is any computational problem which requires a solution more complicated than just ‘yes’ or
‘no’

While our preceding work has been composed entirely of decision problems, it’s obvious that–so far as negative
results–much has been shown about various function problems via their decision problem counterparts. In particular,
while our hierarchies technically confine themselves to decision problems, the notion of reduction can be generalized
to include function problems:

(Efficient) Strong Reduction
Given problems P1 and P2 with the same input, P1 is strong reducible to P2 if and only if, given an oracle for
P2, there is a function R deterministically computable in O(log(n)) space such that for any input x, R(x) gives a
solution for P1

1

For instance, defining

FSAT
Given: a Boolean expression ϕ in CNF
Return: a satisfying valuation for ϕ if one exists

it follows readily from the preceding work that

� Proposition 5.1.
FSAT strong reduces any nptime problem

More surprisingly, it’s also easy to show that

� Proposition 5.2.
SAT strong reduces FSAT

Proof Sketch.
Exhaustively search for an assignment by repeatedly replacing more and more atomics by either ⊥ or >

1I’m just making this up, but it’s the obvious oracle / Turing reduction counterpart and seems to be what’s intended
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This connection between nptime problems and their function counterparts can even, using the semantic defini-
tion of nptime, be formalized:

Associated Function Problem
Given a decision problem P in nptime, the associated function problem for P, denoted FP, is, for any input x,
to give either the verification certificate y for P or return ‘no’ if no such certificate exists

This, of course, readily extends into a definition of two presumably distinct complexity class:

fnptime
The class of associated function
problems for nptime

fptime
The class of associated function
problems for ptime

||?
fptime

fnptime

Figure 5.1: Function Problem Classes

We may even define a notion of reduction particular to functions problems:

(Efficient) Function Reduction
For two function problems A and B, A reduces to B if and only if there are string functions R and S , both in l,
such that for any strings x and z, if x is an instance of A, then R(x) is an instance of B and if z is a correct output of
R(x), then S (z) is a correct output of x

The above in hand, it’s not hard to show that

� Proposition 5.3.
fptime and fnptime are closed under function reduction

� Proposition 5.4.
FSAT is fnptime-complete

and thus,

� Corollary.
fptime = fnptime if and only if ptime = nptime

This last result is taken by many to imply that function problems in general aren’t any more interesting that decision
problems; that, at the macro level, the two have largely identical structure.
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§5.1 Total Function Problems
If there is a counterexample to the idea that function problems hold little interest, it’s to be found in the total functions
problems; that is, those problems which never return ‘no’. In terms of decision problem counterparts, all of these
correpond to the trivial decision problem which includes everything–nonetheless, they can exhibit complex structure.
Among the oldest and most infamous such problems is factoring:

Factoring
Given: n ∈ N

Return: the prime factorization of n

Although provably total, factoring has resisted centuries (knowing or unknowing) of work to produce a ptime
algorithm to solve it. Factoring is thus a problem complicated for a very different reason than many other fnptime
problems (e.g. FSAT)–not because a certificate could fail to exist, but simply because the required certificates are
hard to generate.

The semantic class of total function problems like factoring–tfnptime–is widely regarded to occupy a middle
ground between fptime and fnptime:

||?

||?
fptime

tfnptime

fnptime

Figure 5.2: Function Problem Classes
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Chapter 6

Randomization

The final expansion on deterministic models of computation typically considered is the introduction of the ability to
randomize, to ‘flip unbiased coins’ during computation. As with the introduction of nondeterminism, it’s common to
tweak the definitions for when an algorithm computes a problem; with randomization, the specific choice

Monte Carlo Algorithm
A Monte Carlo algorithm is a randomized algorithm which never gives false positives and which gives false
negatives with probability ≤ p for some p ∈ [0, 1)

Definition in hand, the next task is, as usual, to formalize a model of computation, give definitions for time/space/etc,
and generate the natural complexity classes. The most obvious choice is to add a randomization command to our
model of computation, but–while we will often speak and write this way–there is a more perspicuous representation
available. Instead, we adopt as our formalism that of the nondeterministic models from last chapter and simply redefine
what it means for such a machine to accept.

Monte Carlo Machine
A Monte Carlo machine MR is a nondeterministic machine MD meeting the following criteria:

(i) for a given input size, all computation paths halt after exactly the same number of steps regardless of
nondeterministic choices

(ii) all nondeterministic choices are binary

For any input x,

MR(x)↓= 1⇔ at least half of the computations of MD on x give output 1
MR(x)↓= 0⇔ MD(x)↓= 0

The choice to require at least half of the computations to accept in order for the Monte Carlo machine as a whole
to accept is, of course, arbitrary; that said, it causes no loss in computational power. Just as with nondeterminism, the
definition above again introduces an asymmetry between accepting and declining, one which intuitively matches that
inherent in the definition of a Monte Carlo algorithm.
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Randomized Time Complexity Classes Randomized Space Complexity Classes

rltime = rtime(logk(n)) =
⋃
m∈N

rtime(logm(n)) rl = rlspace = rspace(logk(n)) =
⋃
m∈N

rspace(logm(n))

rp = rptime = rtime(nk) =
⋃
m∈N

rtime(nm) rpspace = rspace(nk) =
⋃
m∈N

rspace(nm)

rexptime = rtime(2nk
) =
⋃
m∈N

rtime(2nm
) rexpspace = rspace(2nk

) =
⋃
m∈N

rspace(2nm
)

2-rexptime = rtime(22nk

) =
⋃
m∈N

rtime(22nm

) 2-rexpspace = rspace(22nk

) =
⋃
m∈N

rspace(22nm

)

P

npconp

pp

bpp

rpcorp

zpp

Figure 6.1: Complexity Classes
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